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Cardiovascular risk assessment might be improved with the addition of emerging, new tests derived from atherosclerosis
imaging, laboratory tests or functional tests. This article reviews relative risk, odds ratios, receiver-operating curves,
posttest risk calculations based on likelihood ratios, the net reclassification improvement and integrated discrimination.
This serves to determine whether a new test has an added clinical value on top of conventional risk testing and how this
can be verified statistically. Two clinically meaningful examples serve to illustrate novel approaches. This work serves as
a review and basic work for the development of new guidelines on cardiovascular risk prediction, taking into account
emerging tests, to be proposed by members of the ‘Taskforce on Vascular Risk Prediction’ under the auspices of the
Working Group ‘Swiss Atherosclerosis’ of the Swiss Society of Cardiology in the future. Eur J Cardiovasc Prev Rehabil
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Introduction
In view of the many new possibilities to estimate cardio-
vascular risk in primary care, the executive committee of
the working group on lipids and atherosclerosis of the
Swiss Society of Cardiology decided to endorse a new
taskforce on vascular risk prediction. During a creative
process that started in February 2005, the taskforce
reviewed the evidence from the literature that reflects
current knowledge.

For physicians working in primary care, prevention of
cardiovascular diseases in their patients has been an

important goal. This is reflected in the new global risk
assessment algorithms issued by the International Athero-
sclerosis Society (IAS [1,2]) and European Atherosclerosis
Society (EAS [3]), which serve as guidelines. They are
based on data from large populations, are statistically valid,
and seem to be especially helpful to identify low-risk
patients because of a very high specificity (SP) (>90%
[2]). Doubt remains about who should receive intensive
primary prevention therapies in primary care, as global risk
assessment tools have a rather low sensitivity (SE) of
approximately 35% to detect patients at a high risk for
cardiovascular events in the future, when currently defined
cut-offs for high risk are used [2].

Risk stratification tools such as tables and risk calculators
(see www.agla.ch adapted for the Swiss population) are
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based on data from large populations and usually provide
valid statistical algorithms for these populations (internal
validity), but before generalizing to new populations,
their external validity should be determined. Although
these tools are essential for an easy stratification, room
for improvement does exist. Imaging, laboratory, and
functional tests might have the potential to add informa-
tion to improve cardiovascular risk assessment.

We aim at providing a comprehensive overview of current
issues associated with the integration of emerging risk
prediction tools. Our aim is to answer the question of
what statistical instruments can be used to judge if a new
test (e.g. atherosclerosis imaging of carotid arteries)
increases the ability to predict risk where the results of
conventional risk factor-based testing are already known.
In other words, how do we assess if an additional test has
an incremental value?

In the subsequent sections, we revisit key definitions of
test characteristics; review different statistical methods
to assess the clinical benefit of an additional test and
briefly address the problem of who should be adminis-
tered an additional test (the entire population potentially
eligible for primary prophylaxis or more limited sub-
populations, individuals only?); and touch upon economic
considerations.

Key definitions of test characteristics
In situations where there exists a universally accepted risk
threshold, the performance of a new test may be quanti-
fied in relatively simple terms. A test result can be posi-
tive, indicating the presence of disease, or it can be
negative, indicating the absence of disease. As a test may
give erroneous results, it may be true positive (TP), false
positive (FP), true negative (TN), and false negative
(FN). This is the basic concept of the two-by-two table in
its application to diagnostic tools.

Further, knowing these key variables for a given test
allows expressing its performance in terms of SE, SP,
positive predictive value (PPV) and negative predictive
value (NPV), positive (pLR) and negative likelihood ratio
(nLR) and accuracy (ACC) [[4–7], (Table 1)]. SE is
defined by the rate of TP in a positive test result [TP/
(TP+FN)]. SP is defined by the rate of TN in a
negative test result [TN/(TN+FP)]. Although SE and
SP are independent of the prevalence of a disease, PPV
and NPV are dependent on the pretest probability, which
in multivariable models would be identical to the
predicted incidence of a disease for a given configuration
of risk factors. PPV is the rate of TP in all positive test
results [TP/(TP+FP)], whereas NPV is the rate of TN
in all negative test results [TN/(TN+FN)]. ACC is
defined as TP+TN divided by the total population
size and is also dependent on the prevalence of a disease.

The preference for reporting SE and SP versus PPV and
NPV as primary summary characteristics varies in the
scientific community. If we want to know what fraction of
true events we will discover with a given test, then SE/SP
is preferred. However, if we reverse the question and ask,
given that my patient is test-positive, what are her
chances of developing the condition, PPV and NPV can
answer this directly. Summary measures, like for example,
the Youden index (SE+SP–1), which serve as the basis
of integrated discrimination improvement (IDI), are yet
another option.

A good estimate for the performance of a test would be
given by a change of the pretest probability using
likelihood ratios. Likelihood ratios can be calculated by
using the SE and SP of a test: pLR [SE/(100–SP)] and
nLR [(100–SE)/SP]. As an example, a test with an SE of
30% and an SP of 90% (which approximately corresponds
to the performance of the PROCAM or the SCORE
algorithm) yields a pLR of [30/(100–90)=3.00] and an
nLR of [(100–30)/90=0.78]. As we can see now, global
cardiovascular risk estimates have an acceptable pLR, but
a rather weak nLR, despite their reportedly high NPV of
about 90%, which is due to the relatively low overall
probability for heart attacks in the population.

How to assess the quality of an additional
test?
One main problem inherent to cardiovascular risk predic-
tion stems from the need to integrate test results into
medical therapeutic decisions. This problem is amplified in
preventive medicine as the paradigm of classical medicine
– ‘establishing a diagnosis’ – is replaced by ‘estimating a
risk for a diagnosis’ that may or may not occur in the future.
A national or international consensus defines the cut-off
level for a high-risk situation. Although high-risk patients
do not have a ‘disease’ per se, they often receive intensive
and costly medical therapies. In Switzerland, people having
diabetes or an IAS risk of greater than 20% in 10 years have
a high risk for vascular events, for example, myocardial
infarction [1]. Therefore, they are treated intensively to
lower their risk.

Table 1 Calculation of test performances (modified from Ref. [7])

SE=TP/(TP+FN)
SP=TN/(TN+FP)
PPV=TP/(TP+FP)
NPV=TN/(TN+FN)
pLR=SE/(1 –SP)
nLR= (1–SE)/SP
ACC= (TP+TN)/(TP+TN+FP+FN)

For the calculation of probabilities, a range from zero to 1.00 is used. Multiply by
100 to obtain percentages and accordingly, sensitivities and specificities are not
expressed in percent but in percent divided by 100. ACC, accuracy; FN, false
negative; FP, false positive; nLR, negative likelihood ratio; NPV, negative predictive
value; pLR, positive likelihood ratio; PPV, positive predictive value; SE, sensitivity;
SP, specificity; TN, true negative; TP, true positive.
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As a first step in the primary cardiovascular prevention
setting, risk is always assessed using coronary risk charts
provided by IAS [1] or by EAS [3]. However, as previously
mentioned, both the IAS and the EAS algorithm have a
relatively low SE (30%) to predict the diagnoses of
‘myocardial infarction’ and ‘vascular death’, respectively,
within the next 10 years, when the defined cut-offs for
high risk are used [2,3]. Therefore, approximately 70%
of patients who will eventually develop a vascular event
are being missed using conventional cardiovascular risk
factor algorithms. The hope is that emerging risk factors
might help to close this detection gap, at least in part
[8,9], with the help of laboratory tests (e.g. high-sensitivity
C-reactive protein, homocysteine, plasminogen matrix
metalloproteinase-1, inter-cellular adhesion molecule 1),
arterial function tests (e.g. endothelial function tests,
ankle-brachial-index, tests for aortic stiffness or elastance),
and imaging tests of atherosclerosis (carotid intima-to-
media thickness, carotid plaques, coronary calcifications).

There are various ways in which results from these
emerging cardiovascular risk factors might be integrated
into clinical practice.

The question is, do they add significantly to risk predic-
tion? We can distinguish between methods to evaluate
model performance, specifically c-statistics, IDI, net re-
classification improvement (NRI), and classification rules
(posttest odds):

(1) Measures of relative risk: relative risk, odds ratios,
hazard ratios.

(2) Measures of model performance: c-statistics, calibra-
tion w2.

(3) Measures of model improvement: difference in c-
statistics, NRI, IDI.

(4) Methods to add new test: posttest risk calculation,
redevelopment of the model with new test variable.

Risk ratios, odds ratios and hazard ratios calculate the
magnitude of effect between different values or cate-
gories of the new test, and when used in multivariable
models, help to determine independent association of the
new test with outcome. Obtaining precise estimates of
these measures of relative risk is one of the necessary
conditions for good discrimination of the model. Dis-
crimination, often quantified using the c-statistics,
measures the model’s ability to distinguish cases from
non-cases. A complementary measure, called calibration,
assesses the model’s ability to assign risks that are close
to those observed in practice. Discrimination can be more
tied to relative risk, while calibration to absolute risk, but
these two are usually closely related. C-statistics calcu-
late the accuracy of the discrimation between subjects
who will and who will not develop a disease [10]. An
integration of test accuracy expressed as calibration and

discrimination is the posttest risk calculated with like-
lihood statistics, where the probability of developing a
disease is integrated by using the pretest probability.
Both likelihood statistics and newly developed reclassi-
fication systems for risk categories (NRI) and for
continuously described risk (IDI) allow the shift of a
subject from one risk category to another, such as from
low risk to intermediate risk. For example, using NRI, the
accuracy of a test is measured by the number of subjects
in whom a correct risk category change occurs. If such a
test does not correctly change risk categories in a
significant proportion of subjects, this test does not
appear to be clinically meaningful.

The basic requirements that a new test should satisfy
before being considered for inclusion in clinical practice
are given in Table 2 [11].

Relative risk indicators
Risk ratios, odds ratios or hazard ratios are frequently
used in the literature to assess the performance of a test.
Hazard ratios, for example, for high-sensitivity C-reactive
protein or intima-to-media thickness result frequently
in statistically significant improvements in risk prediction
[12,13] and are based statistically on a multiple logistic
regression model. However, when receiver-operating
characteristic (ROC) analysis is applied to the same tests,
they usually do not show a statistically significant impro-
vement [10,14–16]. This problem is still open to debate
and a final answer to this goes beyond our review. How-
ever, as suggested by Cook and Pencina [10,17], one
solution is the calculation of posterior risk and to look at
the number of reclassified subjects.

Receiver-operating characteristic analysis based on
c-statistics
In the binary case, ROC curves (c-statistic) display a plot
of SE versus 1 – SP over all possible risk thresholds after
inclusion of a continuous predictor. Area under the ROC
curve (AUC) has been used as a measure of discrimina-
tion, namely the model’s ability to distinguish future
events from non-events based on baseline risk prediction.
A test with an AUC of 0.70 or more may be useful. The
incremental value of a second test is determined by the
combined AUC of both tests (e.g. 0.82), which would in
this example correspond to an additional diagnostic
information of 0.12 (or 12%). This is an example of a
clinically meaningful increase in the AUC when a new

Table 2 Criteria for a good screening test (modified from Ref. [11])

1. Independent comparison with a gold standard
2. Large spectrum of pretest probabilities
3. Ability to change clinical decisions
4. High reproducibility
5. Validation in several populations
6. High accuracy to discriminate individuals with and without disease
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test is added. The difference may become statistically
significant (depending on the sample size, the number of
events observed [18]). ROC analysis has however been
criticized for being a too conservative statistical approach
and therefore rejects many new emerging tests for the
prediction of cardiovascular events despite clinically
important and statistically significant increased relative
risks after adjustment for a variety of other cardiovascular
risk factors [10].

Beyond ROC: net reclassification improvement
and integrated discrimination improvement
A promising step ahead would be to calculate the ability
of a new emerging test to reclassify subjects to a different
risk category. The ability of a risk marker to accurately
stratify individuals into higher or lower risk categories
(reclassification) is increasingly used in the literature on
behalf of the NRI (categorical) and IDI (continuous) [17].

The following example is based on Ref. [17]. Consider a
model for coronary heart disease (CHD) risk prediction
which contains standard risk factors of the Framingham
Risk Score (age, male sex, systolic blood pressure,
smoking, diabetes and total cholesterol). The question
is whether the addition of HDL cholesterol improves
prediction in a meaningful way. Among 3264 individuals
free of cardiovascular disease at baseline, 183 develop
CHD during 10 years of follow-up. On the basis of the
National Cholesterol Education Program ATPIII guide-
lines, people with CHD risk above 20% would be targeted
for aggressive treatment and those below 6% would be
considered low risk. Everyone can be classified into one of
the three risk categories based on a pretest probability
derived from a model without HDL. If a new test (HDL
in this case) is useful, models which additionally contain
HDL should move those who will experience events
upwards to a higher risk category and those who will not,
downwards. The reclassification for this example is
presented in Table 3. We see that 29 events were moved
up and 7 down for a net gain of 22 out of a total of 183.
Among 3081 nonevents, 174 were moved down and 173
up for a net gain of 1. The NRI is given as 22/183+
1/3081=12.1%. Methods exist to construct a confidence
interval and perform a test of significance for the net effect.

The IDI is a continuous version of the net reclassifica-
tion. Here, instead of counting each movement in the
right direction as one and in the wrong direction as minus
one, we calculate the difference in predicted probabilities
between models with and without the new test and add
them separately for events and non-events.

Example of posttest risk odds using total plaque area
of carotid arteries
Posttest risk odds are helpful to reclassify a patient risk,
for example, from intermediate to high. The posterior
probability of disease is calculated based on the pretest

odds multiplied by the likelihood ratio (for details refer to
Table 4), and is a conservative but widely accepted esti-
mate of posttest risk [19–21]. This kind of risk prediction
is, however, based on the assumption that the pretest
probability of risk can be determined with sufficient
precision and may not adequately account for correlations
between the standard risk factors and the new test [22].

In the setting of cardiovascular primary prevention, the
posttest risk approach allows the use of a second or sequential
test to calculate posttest probabilities (PTPs), whereas
the pretest or first test is based, for example, on the IAS
algorithm. In the following example we used the IAS risk
of individuals and total plaque area (TPA) to calculate a
posttest risk. TPA is a measure of the total plaque burden
of the carotid arteries. Plaques are traced longitudinally,

Table 3 Reclassification among people who experience a CHD
event and those who do not experience a CHD event on follow-up

Model without
HDL Model with HDL Total

Participants who experience a CHD event
Frequency row
percentage

<6% 6–20% >20%

<6% 39
72.22

15
27.78

0
0.00

54

6–20% 4
3.81

87
82.86

14
13.33

105

>20% 0
0.00

3
12.50

21
87.50

24

Total 43 105 35 183
Participants who do not experience a CHD event
Frequency row
percentage

<6% 6–20% >20%

<6% 1959
93.24

142
6.76

0
0.00

2101

6–20% 148
16.78

703
79.71

31
3.51

882

>20% 1
1.02

25
25.51

72
73.47

98

Total 2108 870 103 3081

In Table 3, among those experiencing a coronary event, 54 patients were
classified as low risk. Adding HDL as a new test, 15 patients were shifted into the
intermediate risk category. In the intermediate risk group (e.g. 6–20%), four were
incorrectly moved to low risk by HDL, but 14 patients were correctly shifted into
the high-risk group (net gain: 10 patients). All over, 15+10 –3=22 patients
were correctly reclassified by HDL. In analogy, in Table 3, only one additional
patient was correctly reclassified by HDL. In this example, the net reclassification
is given as 22/183+1/3081=12.02+0.03%=12.1%.

Table 4 Formula for the calculation of posttest probabilities

PTP pos: (PV"SE)/[PV"SE+ (1 –PV)" (1 –SP)]
PTP neg: [PV" (1 –SE)]/[PV" (1 –SE) +SP" (1 – PV)]

This formula is essentially an abbreviation for the calculation of posttest risk
based on the pretest odds multiplied by the likelihood ratios. As an example,
pretest probability may be 0.33 or 33%, therefore pretest odds are 0.33/
1 – 0.33=1/2. Likelihood ratios are given in Table 5 and are based on the
sensitivity and specificity of a test for different cut-offs. As an example, patients
with carotid atherosclerosis within the fourth quartile have a positive likelihood
ratio of 2.52. Posttest odds are therefore: 2.52/2=1.26. Posttest odds are
converted into a posttest probability by 1.26/1.26 +1=0.56. In summary, risk of
33% increases to 56% in this example. PTP neg, posttest probability for a disease
if the test is negative (normal); PTP pos, posttest probability for a disease if the test
is positive (pathologic); PV, pretest probability [or prevalence (PV)] for a disease;
SE, sensitivity; SP, specificity.
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and the TPA is derived from the sum of all plaque areas
detected during the imaging of both carotid arteries.
Imaging is performed with the patients in the supine
position as described in the original Canadian London
cohort [23]. Within this cohort, we identified 684
originally healthy individuals, in whom 13 fatal and
nonfatal myocardial infarctions were observed during a
follow-up period of 3 years (unpublished data). Further-
more, we determined the SE and SP of the quartiles of
TPA to detect these 13 myocardial infarctions (Table 5).
On the basis of the posttest risk formula (Table 4),
posttest risk can be calculated. This approach is
exemplified in Table 6, where an IAS risk for myocardial
infarction in 10 years is taken as the pretest probability
and TPA is used to calculate the TPA-PTP. In addition,
95% confidence intervals are calculated for this posttest
risk, for different levels of pretest risk (as an example: 5,
10, and 15% pretest probabilities based on IAS). The
results in Table 6 show that this kind of sequential testing
is useful to identify high-risk patients with intermediate
IAS risk; for example, 10–19% 10-year risk for myocardial
infarction. If in a given patient, the IAS risk was 15% and
TPA was above 0.18 cm2, then this patient would be
reclassified from the intermediate to the high-risk group
and would have to be counseled and treated accordingly.
Such calculations are a reclassification rule but not nece-
ssarily a measure of improvement. NRI or IDI for such a
rule could be calculated to see how good reclassifications
based on posttest risk calculations might be.

Who should be administered an additional
test and economic considerations?
In the considerations presented so far, we have implicitly
presented two different strategies of applying a new test.

The first one is to add the new test to the set of standard
risk factors and to refit the prediction models with the
new test included. In this approach it is assumed that
the new test will be performed on everyone and the
data will be available for risk prediction. Some authors
strongly advocate inclusion of cost considerations in the
assessment of utility of new tests [24]. Their reasoning is
simple: if we can assign costs to correct and incorrect
diagnoses and also to testing procedures, we can come up
with a decision strategy which would minimize the cost.
For example, if for every patient classified as low risk who
develops CHD we have cost x and for every person with
high risk who does not develop an event we have cost y,
the total cost can be expressed as a function of x and y
weighted by the number of people in each category for
a given risk threshold. If no threshold is established,
averaging over all possible threshold values might be
considered. Then, we can calculate the cost decrease
offered by the employment of a new test by taking the
difference between the costs estimated from models with
and without the new test.

Proper ascertainment of costs x and y can be challenging.
Moreover, costs can change over time and may not be
uniform across countries. This leads to a potential
problem of declaring a new test useful in one setting
but not useful in another. The use of IDI and NRI
provides a simple solution to this problem by assigning
cost ratio of x : y corresponding to the incidence ratio of
the condition of interest. For example, if the incidence of
CHD is 10%, x : y would be 9 : 1 (missing a person who
will develop CHD is nine times more costly than
unnecessarily treating a person who will not develop
CHD). This is arbitrary and disregards the actual
(monetary) costs of diagnosis and clinical events, but
the absence of more reliable estimates might be a
reasonable approximation.

The second approach to calculate PTPs allows to apply
the new test to a subset of individuals only, for example
those who, based on the initial pretest, fall in the
intermediate risk category. Such a strategy might be cost-
efficient, especially when the new test is inexpensive. Of
particular importance becomes the correct identification
of the subpopulation that needs to be administered the

Table 5 Diagnostic performance of the TPA in 684 originally
healthy patients with 13 myocardial infarctions during follow-up
(calculated from Ref. [21])

Quartiles
TPA
(cm2)

No. with
AMI

10-year
risk (%) Sensitivity Specificity pLR nLR

1+2 0.00–0.17 1 0.98 92 51 1.87 0.15
3 0.18–0.55 4 7.76 69 74 2.88 0.38
4 0.56–4.83 8 15.50 62 76 2.52 0.51
Best cut 1.00–4.83 8 15.50 62 87 4.77 0.44

AMI, acute myocardial infarction; nLR, negative likelihood ratio; pLR, positive
likelihood ratio; TPA, total plaque area.

Table 6 Posttest risk calculations and 95% CI for three different levels of pretest risk, especially suited for reclassification of individuals

Pretest risk 5% Pretest risk 10% Pretest risk 15%

TPA PTP risk (%) 95% CI TPA PTP risk (%) 95% CI TPA PTP risk (%) 95% CI

0.00–0.17 0.80 0.10–5.00 0.00–0.17 1.70 0.30–10.0 0.00–0.17 2.60 0.40–15.0
0.18–0.55 8.90 7.60–10.5 0.18–0.55 18.2 14.8–19.8 0.18–0.55 24.8 21.7–28.2
0.56–4.83 11.7 7.80–17.2 0.56–4.83 21.9 15.1–30.5 0.56–4.83 30.8 22.1–41.1
1.00–4.83 20.1 13.6–28.9 1.00–4.83 34.8 25.0–46.1 1.00–4.83 45.9 34.6–57.6

Pretest risk was based on the International Atherosclerosis Society risk with an example for three individual persons. Posttest risk was calculated as exemplified
in Table 4. In addition, 95% CI were calculated according to Ref. [18]. The population for posttest risk calculations were 684 originally healthy individuals with
13 myocardial infarctions during follow-up (calculated from Ref. [21], unpublished data). Bold numbers indicate high risk for coronary events. CI, confidence interval; PTP,
posttest probability; TPA, total plaque area.
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new (additional) test. Although this approach seems
intuitive and appealing, it has potential drawbacks. It is
not unlikely that if we limit the administration of the
new test to the intermediate risk group, people in the low
and high-risk groups who would otherwise be reclassified
to a different risk group, may be missed.

Limitations
Several issues could not be covered comprehensively in
this overview paper on methods about risk categorization
and risk prediction. Especially questions about the ideal
test on specific target populations (e.g. study cohort
versus general population) or methods that more appro-
priately account for the increasing effect of age in elderly
populations using age as the time scale. Further, many
questions about cost-efficiency and cost-effectiveness
would go far beyond the scope of this overview, despite
their high relevance for test use appropriateness. Finally,
important questions about internal validation of a new
test and its external validation in independent population
samples can only be mentioned within this section.

Conclusion
Prediction of cardiovascular events in originally healthy
subjects remains a difficult task. Nowadays, not only do
we have a large number of tests for risk prediction, either
based on laboratory findings, ischemia testing or plaque
imaging, but we are also confronted with a variety of
statistical methods for estimating the added clinical
utility of these new or emerging tests.

Based on the number of correctly identified diseased and
non-diseased subjects, the performance of a test can be
quantified. Whether a test is helpful or not, can be judged
by a large number of criteria including pretest and PTPs,
reproducibility and applicability, SE and SP, positive and
NPVs. ROC analysis, successfully used to assess overall
model performance, has potential deficiencies when it
comes to assessing the additional independent value of a
new test in medicine. It should still be calculated, but
sole reliance on its effect is insufficient. In clinical
practice, estimates of pretest probabilities based upon
vascular risk calculators such as PROCAM, SCORE or
Framingham and the subsequent calculation of PTPs
based on the posttest risk calculations might be a
promising approach to influence individual patient
management based on true evidence and therefore
clinically meaningful manner. This approach, however, is
a reclassification rule and is not a measure of model
performance.

Newer methods that adequately assess model perfor-
mance, specifically developed for quantifying the added
utility of new tests, include the NRI and IDIs. They are
promising in terms of more meaningfully addressing the
issue at hand, especially in comparison with c-statistics.
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